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Why Study Gamma Rays?

= The strong force constrains the distribution and motion
of the nucleons within the nucleus

= Nuclear charges and currents generate time-varying EM
potentials and fields - these reflect the underlying
structure

= Gamma rays arise from EM interactions and allow a probe
of structure without large perturbations of the nucleus

= The EM interaction is well understood
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Gamma Ray Spectroscopy

= Gamma rays provide a superb probe for nuclear structure

> relatively easy to detect with good efficiency and
resolution

» emitted by almost all low-lying states
» penetrating enough to get out to detectors

» no model dependence in the interaction (EM is well
understood)

11/20/2018 Nuclear Physics Postgraduate Lectures: E.S. Paul



Spectroscopic Techniques

= Energies, coincidence relationships
> level structure

= Angular correlations, linear polarisation
> spin and parity

= Doppler shift, lineshape analysis
> lifetime, quadrupole moment

= Branching ratios, multipole mixing ratios
> wavefunctions, transition matrix elements
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Nuclear Reaction
Fusion Evaporation

David Campbell
Florida State
University
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Generating spectra from

g LA Event 3 (100,200) (200, 100)
high-fold coincidence data. (100 500) (500 100)
Raw Event 1: 100, 200. (100,250) (250,100)
Raw Event 2: 100, 200, 300. (200,500) (500,200)
Raw Event 3: 100, 200, 500, 250. (200,250) (250,200)
Event 1 (100, 200)  (200,100) "2 (250,500) (500,250)
Event 2 (100,200) (200,100)500 + 1 1 1

(100, 300) (300, 100)
(200, 300) (300, 200)
R 400
-1 250
400 300 T 1 1
1 1 1
S 500 200+ B 11 1
300
100 | 211 1
200 A | | | | »
—*— X 100 200 300 400 500

100
11/2042818

Nuclear Physics Postgraduate Lectures: E.S. Paul

E

'Yl7



3007 :1:
1

200t 3 ::11

b b

...OQH....H".......................0....

R 100+ 3 11 1

3+ S TS SO i
100 200 300 400 500 E’Yl

i III I
I =E

11/20/2018 100 ZOQucleaéggsicsﬁggrgmgt%Qe LecTur’g: E.S. Paul



Coincidence Gates

Improving Peak-to-Background - gated spectra I
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High-Fold Spectra
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= High-fold coincidence spectra from Gammasphere
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Angular Distributions

= Following a heavy-ion fusion-evaporation reaction the
nuclear spin is aligned in a plane perpendicular to the
beam axis

t=rxp

= This provides a reference quantisation axis against which
gamma-ray angular distributions I (6) can be measured

= The angular distributions depend on the multipolarity of
the emitted gamma ray, i.e they are different for dipole
and quadrupole transitions.
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Angular Distribution Function

= The general form for the angular distribution function
of radiation emitted following a heavy-ion fusion-
evaporation reaction is:

W(O) = Ag [ 1+ Qx{A,/Ap}P,(cosB) + Qu{A4/A}P4(cosO) ]

where Q, are geometrical attenuation coefficients which
account for the finite size of the detectors and P,(cos0)
are Legendre polynomials. Here 6 is defined relative to
the beam axis

= The measured A,/A, coefficients are compared to
theory for different types of radiation
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Angular Distributions in 1°Te
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Angular Distributions in 1°Te
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Theoretical A /A, Values

= If the two lowest multipoles of the radiation are L and L'
= L+1, the A,/A, coefficients may be written as:

A/ Ag = 0, By(J7) [1/(1+3%)]
X [ Fk(JfLLJi)+ 20 Fk(JfLL' J',~)+52Fk(Jf L' L J,)]

where q, are attenuation coefficients, B, (J.) are
statistical tensors for complete alignment, and 0 is the
multipole mixing ratio:

0= <Jf| |L'| IJi> / <Jf| ILl IJi>
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Multipole Mixing Ratio

= Because of the relative multipole transition
probabilities, we only need to consider M1/E2 mixing

= For a AT = 1 transition, M1 radiation accounts for
1/ [1+82] (typically 95%) of the intensity, while E2
radiation accounts for 82 / [1+62] (typically 5%) of the
Intensity

= The mixing ratio, a ratio of reduced matrix elements,
can be positive or negative and perturbs the angular
distribution
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Multipole Mixing Ratios
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Angular Distributions in 1°7Er
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Angular Correlations

A = The probability (i.e.
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Angular Correlation Ratios: °7Er
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Linear Polarisations

= Compton scattering can be used Yo measure the gamma
ray linear polarisation - the direction of the electric
vector with respect to the beam-detector plane

= The linear polarisation distinguishes between magnetic
(M) and electric (E) character of radiation of the same
multipolarity

= The scattering cross section is larger in the direction
perpendicular to the electric field vector of the
radiation
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Clover Detector

= The Compton scattering between
the elements of a clover detector
can be used to determine
experimental linear polarisations

= The vertical and horizontal
addback intensities are measured
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Experimental Asymmetry

= The experimental asymmetry is defined as:
A = { N - N"}/{NJ_"' N”}

where NLand N| are the intensities of scattered photons
perpendicular and parallel to the reaction plane

= The experimental linear polarisation is then:
P=A/Q

where Q is the polarisation sensitivity of the detector
(a function of gamma ray energy)

* Forastretched E2:P>0 For astretched M1: P< 0O
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Polarisation Spectra
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Spins and Parities
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Flash Animations

= Cube Gating
= Level Scheme Building
= Level Scheme Formation

= Compton Suppression
= Compton Suppression 2
= Clover Addback

David Campbell (Florida State University)
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